Grounding FO and FO(ID) with Bounds

نویسندگان

  • Johan Wittocx
  • Maarten Mariën
  • Marc Denecker
چکیده

Grounding is the task of reducing a first-order theory and finite domain to an equivalent propositional theory. It is used as preprocessing phase in many logic-based reasoning systems. Such systems provide a rich first-order input language to a user and can rely on efficient propositional solvers to perform the actual reasoning. Besides a first-order theory and finite domain, the input for grounders contains in many applications also additional data. By exploiting this data, the size of the grounder’s output can often be reduced significantly. A common practice to improve the efficiency of a grounder in this context is by manually adding semantically redundant information to the input theory, indicating where and when the grounder should exploit the data. In this paper we present a method to compute and add such redundant information automatically. Our method therefore simplifies the task of writing input theories that can be grounded efficiently by current systems. We first present our method for classical first-order logic (FO) theories. Then we extend it to FO(ID), the extension of FO with inductive definitions, which allows for more concise and comprehensive input theories. We discuss implementation issues and experimentally validate the practical applicability of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deductive System for FO(ID) Based on Least Fixpoint Logic

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. The goal of this paper is to extend Gentzen’s sequent calculus to obtain a deductive inference method for FO(ID). The main difficulty in building such a proof system is the representation and inference of unfounded sets. It turns out that we can represent unfounde...

متن کامل

Inference in the FO(C) Modelling Language

Recently, FO(C), the integration of C-LOG with classical logic, was introduced as a knowledge representation language. Up to this point, no systems exist that perform inference on FO(C), and very little is known about properties of inference in FO(C). In this paper, we study both of the above problems. We define normal forms for FO(C), one of which corresponds to FO(ID). We define transformatio...

متن کامل

LPC(ID): A Sequent Calculus Proof System for Propositional Logic Extended with Inductive Definitions

The logic FO(ID) uses ideas from the field of logic programming to extend first order logic with non-monotone inductive definitions. Such logic formally extends logic programming, abductive logic programming and datalog, and thus formalizes the view on these formalisms as logics of (generalized) inductive definitions. The goal of this paper is to study a deductive inference method for PC(ID), w...

متن کامل

A Constraint Propagation for First-Order Logic and Inductive Definitions

In Constraint Programming, constraint propagation is a basic component of constraint satisfaction solvers. Here we study constraint propagation as a basic form of inference in the context of first-order logic (FO) and extensions with inductive definitions (FO(ID)) and aggregates (FO(AGG)). In a first, semantic approach, a theory of propagators and constraint propagation is developed for theorie...

متن کامل

On the Complexity of Model Expansion

We study the complexity of model expansion (MX), which is the problem of expanding a given finite structure with additional relations to produce a finite model of a given formula. This is the logical task underlying many practical constraint languages and systems for representing and solving search problems, and our work is motivated by the need to provide theoretical foundations for these. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010